Procedural Generation of 3D Maps
A Study of Polygon Graph based Map Generation

Marc Dangschat
FH Miinster University of Applied Sciences
dangschat@ fh—-muenster. de

Abstract

The procedural generation of new content in video games
is booming in the last years. There where even games
whose biggest selling point was the amount of procedu-
rally generated data. In this paper we elaborate about
our use of an graph based map generation method that
was used to generate archipelago type maps for a sea-
fare and pirates 3D game. The map graph has been
computed based on a random point distribution which
was used to create a Voronoi diagram, which has been
combined with its corresponding Delauny triangulation.
We will explain how this graph data can later be used
to compute islands and mountainsides and biomes and
rivers and lakes. Based on this data, we place vegetation
and NPCs and other game objects in appropriate places
on the map. Following the detailed description on what
methods we used for the different tasks, we provide some
insight into what worked well in our approach and what
aspects could be improved.

1 Introduction

Procedural generation is a collective term covering meth-
ods for algorithmically generating data. Generally mean-
ing that the generated data was not directly specified in
its final form by the developer, but rather was produced
by the algorithm. Procedural generation is gaining pop-
ularity fast within the movie and video game industry.
Content generation enabled the video game industry to
minimize the work needed to create content. Algorithms
support the artists or automate the creation of simple con-
tent completely. Thereby developers try to reduce the
amount of data to be delivered to the customer as well as
reducing development costs. Some modern games like
Minecraft [12], No Man’s Sky [10] or Dwarf Fortress [1]
have little to no traditional content that was created by a
designer. A substantial amount of their content is created
by algorithms. Technology like this opens new prospects
for content variety.

Yves-Noel Weweler
FH Miinster University of Applied Sciences
Y. weweler@ fh-muenster. de

Figure 1: Example of a map that was generated using our
implementation. The map is mapped with textures and
populated with vegetation, props and interactive game
objects.

For the same reasons procedural content generation
is becoming more and more popular in the movie
industry. Movies like Avatar [2] feature scenery which
contents were generated to a substantial amount by
computers. Algorithmically modeling hundred of plants
and simulating the growth of entire forests [7]. Even
the generation of textures, music and the behavior of
artificial intelligence is more and more often influenced
by procedural algorithms. The algorithms are generally
designed to reproducible generate apparently random
content. Given the same initial state, the algorithm
produces the same content, every time.


dangschat@fh-muenster.de
y.weweler@fh-muenster.de

We describe our experience and implementation of
the 3D map generation technique using polygon graphs
introduced by Patel in [11]. Our implementation
generates a complete 3D map including automated
texture mapping and distribution of vegetation, props
and objects used for gameplay interaction, as shown
in Figure 1. The map is generated by connecting the
graph representation of a Delauny triangulation with the
corresponding dual graph of the Voronoi diagram. This
graph is refined using Lloyd relaxation and traversed
afterwards to assign parameters like elevation, moisture
and other information to nodes and edges of the graph.
The graph is converted into a polygon mesh, mapped
with textures and populated with vegetation, props and
objects for the player to interact with. An overview of
the implemented approach is described in section 3.

The main contribution of our work is:

e Created an alternative point of view on the polygon
graph based map generation approach originally de-
scribed by Patel in [11].

2 Related Works

In our work we investigate previous work about polygon
graph based map generation, in particular procedural
content generation for video games. We follow the graph
based map generation method described by Patel in
[11]. To implement a rough game prototype, we extend
the approach by techniques for procedurally assigning
terrain textures as well as placing foliage, props, and
objects for direct player interaction. Using a graph
structure to generate the world representation allows for
simultaneous generation of gameplay related contents.
Physical world topology and map meta-information used
for enforcing gameplay constrains are combined in one
representation.

In our implementation, we realize the generation
of rivers and watersheds by traversing the graph edges
from nodes with low elevation, shoreward up to nodes
with higher elevation in proximity to mountains. Other
techniques use regular height fields or parameterized
curves to describe rivers. Different alternative tech-
niques like [8] employ Voronoi cells like we do, but
reverse the generation process. They first generate rivers
represented by a directed acyclic graph. After that,
they decompose the terrain in into a set of patches by
using the river nodes as center points and computing
the corresponding Voronoi cells. In our implementation
rivers do not flow through the Delaunay nodes, but
instead flow along the Voronoi edges.

For map mesh rendering, we transform elevation
data from the graph based representation into a
heightmap. Alternative methods for generating feasible
height fields mostly rely on fractals and noise, for
example Brownian surfaces [13], Random Midpoint
Displacement Fractals [4] or the popular Simplex Noise
method [5]. For realism these methods are sometimes
combined with physical erosion simulation to generate
realistic-appearing terrain.

An alternative approach used for 3D map genera-
tion is the altering of volumetric terrain representations,
mostly in the form of voxels [6]. The volumetric gen-
eration often allows for representation of more diverse
terrain formation, for example overhanging rocks or
caves. The approaches employed for generation are
based upon the before mentioned fractals and noise
functions, but are transferred to higher dimensional
spaces.

3 Approach

Figure 2 shows an overview of the pipeline for the gen-
eration of 3D maps using polygon graphs. A set of ran-
dom points in a plane with a Gaussian distribution is pro-
duced. A Voronoi polygon is calculated from the ran-
dom points. Several Lloyd relaxation iterations are made
on the Voronoi polygon depending on how evenly dis-
tributed the single polygons cells should be for map gen-
eration. Note that after a certain amount of relaxations,
the polygon cells do not change their appearance any-
more and remain fixed. After a Voronoi polygon is ob-
tained, the basic map generation is performed. This in-
cludes definition of the basic terrain, distribution of ter-
rain elevation, lakes, rivers, moisture and assignment of
a biome. After the graph based map representation is
populated, we generate a 3D map mesh and slice it into
chunks used for rendering. In a second game specific
generation step we apply textures and generate vegeta-
tion as well as props based on the terrain profile. Aside
from that we generate further game specific content like
harbors or enemy encounters.

4 Map Representation

The map is represented using two graphs that are
linked together. The first graph represents the Delaunay
triangulation of a set of points. It holds one node for
each randomly placed point and edges between adjacent
points. The second graph represents Voronoi polygons,
where each node is a polygon corner and the edges
connect the corners. A visual presentation of the graph
structure can be seen in Figure 3. Inside every polygon



Random

Points
Voronoi , Landmass /
Polygons S/ Ocean
} | -
Elevation
Lloyd -
Relaxation L
l Water / Lakes
' v
Basic Map
Generation Rivers
| v
3D Data Moisture
Generation v
l ‘\ Biomes
Slicing /
Chunks
Game Specific v .
- egetation /
Content Generation Props
Y
Harbors /
Generated Encounters
Map

Figure 2: System overview for 3D map generation using
polygon graphs.

of the Voronoi graph, there is a corresponding node
(polygon center) in the Delaunay graph. Contrary,
inside every triangle of the Delaunay graph, there is
a corresponding node in the Voronoi graph (polygon
corner). As shown in Figure 3 the edges of both graphs
are also connected. For every edge connecting two
nodes of the Voronoi graph (polygon corners), there
is always a corresponding edge connecting two nodes
(polygon centers) in the Delaunay triangulation and vice
versa.

A larger example of this connected graph structure
can be seen in Figure 4. With the Delaunay nodes
(polygon centers) in red and the Voronoi nodes (polygon
corners) in blue. The Voronoi edges are visualized in
blue and the Delaunay edges in red.

When we generate a map, we first build a single con-
nected graph data structure that combines the Delauny
and the Voronoi graphs. Within this graph nodes
and edges can store different parameters that will be
populated in the following steps.

A Delaunay node, for example, contains data about
the adequate biome, its elevation and moisture as well as
several flags to identify its affiliation to landmass, coast,
ocean or water in general.

DelaunayNode {

Figure 3: Visualization of the graph interconnection. A
and B are nodes of the Delaunay graph, 1 and 2 are nodes
of the Voronoi graph. The Triangle ABC represents a
Delaunay triangle.

Biome biome,

float elevation,

float moisture,

bool flags: IsBorder, IsCoast, IsOcean, IsWater,

Contents of a Voronoi node are similar to a Delaunay
node. But since biomes are assigned to a polygon as a
whole, single polygon corners do not store biome infor-
mation. Since river calculation is done on the Voronoi
graph, they store adjacent nodes with the highest downs-
lope and the amount of rivers which pass the node.

VoronoiNode {
VoronoiNode downslopeNode,
float elevation,
float moisture,
bool flags: IsBorder, IsCoast, IsOcean, IsWater,
int rivers,

Edges, however, are mainly used for river generation and
store only the amount of rivers that flows through them.

Edge {
int rivers,

5 Map Generation

5.1 Landmass

The first step in generating the map is a basic binary
assignment of either landmass or water to each Voronoi



Figure 4: Example of a larger graph. Delaunay nodes
(polygon centers) in red, Voronoi nodes (polygon cor-
ners) in blue. Voronoi edges are visualized in blue and
the Delaunay edges in red.

polygon. This assignment determines the general shape
of a generated world. After this categorization the graph
structure is traversed to mark all nodes and edges where
land and water meet as coastline. A visualization of this
step can be seen in Figure 5.

Determining which polygons should be landmass
and which one should be water can be done by evaluat-
ing a function L (Equation 1). It takes a polygon corner
p as an input and outputs if it’s landmass or water.

Lip) = {?

What function to use depends on the desired results. It
can for example be based on a user defined mask, noise,
fractals or even something as simple as the distance
to the maps center point. In our implementation, we
wanted to generate a set of small random islands. For
that we decided to use Perlin noise, since it offered
the possibility to generate two dimensional pseudo
random noise whose behavior can be controlled. After
a parameter study, we came out with Equation 2, where
Dx» Py are the x and y components of the corner point
p and oy, oy are a random component displacement. A
visual representation of how this function transforms
noise into islands can be seen in Figure 6.

if polygon is water
polyg (1

if polygon is landmass

All polygons adjacent to the map borders, are marked
as water automatically. This ensures, not only a greater
freedom of movement for a player on the map, but is

Figure 5: Assignment of each Voronoi polygon to either
landmass or water.

also useful in later stages when working with lakes or
rivers for example.

To generate the Perlin noise, we use an octave count of 1
and a frequency of 9 Hz. Perlin noise can be seen as the
sum of several noise functions with increasing frequen-
cies and decreasing amplitudes. Each of these added fre-
quency layers is called an octave, since it has double the
frequency of the previous layer. Therefore, Perlin noise
generated with higher numbers of octaves contains in-
creasingly more high frequency components. The effect
of an increasing octave count can be seen in Figure 7.
An octave count of one combined with a low frequency
of 9 Hz is sufficient for our purposes since the resolution
of our Voronoi polygons is very coarse.

L(p) = {?

with o7 (p) = Perlin(

if @ (p)
if & (p)

8=

<
; " 2)

NS}

Px+0x Py+0y)
9 7 9

5.2 Lakes

Lakes can be defined as patches of water polygons that
are fully encapsulated by landmass. Ocean on the other
hand is water with an adjacent ocean polygon or water
connected to the map borders. The lake generation is
implemented by traversing the graph structure starting
from the map border. Since all polygons adjacent to the
map border are marked as ocean, we start with them. We



(a) Unmodified Perlin noise

(b) Applyed > 0.5 threshold

(c) Function evaluation for all polygons

Figure 6: Evaluation process of the Perlin noise function for landmass assignment.

(a) Output of the Perlin noise function before thresholding.

(b) Perlin noise after thresholding each point with the !/, boundary.
(c) Assignment of Voronoi polygons to either landmass or water by evaluating the noise function for each polygon

center point.

repetitively mark neighbor polygons as ocean when they
are water and not landmass. A visual example of this
process can be seen in Figure 8. As one can see water
polygons fully encapsulated by landmass result in lakes.
Water polygons connected to ocean are marked as ocean
themselves.

With our implementation we solely rely on the previ-
ously generated landmass to have patches of water poly-
gons encapsulated inside it. This approach can be ex-
tended to insert additional lakes into the world. For ex-
ample, one could build a second noise function with a
higher frequency and an appropriate threshold to create
small patches. Depending on its representation this func-
tion could be subtracted or multiplied to the basic land-
mass function from Equation 1 to mark the small patches
as water.

5.3 Elevation

Just like Patel did in [11], we generate elevation data
after shaping the landmass. So instead of creating
elevation data and a planar water level to define coastal
regions we generate elevation afterwards.

The elevation algorithm has to satisfy the follow-
ing constraints:

e Strictly monotonically decreasing elevation from
the map center to the map borders or in the case of
islands, strictly monotonically decreasing elevation
from the island center points.

e Near planar elevation within lakes.

With a strictly monotonically decreasing elevation
function we circumvent local minima that would make
the later river generation much harder. With an mono-
tonically decreasing terrain altitude we ensure that rivers
always flow downhill towards the ocean. A nearly planar
terrain altitude inside lakes is needed to ensure that a
planar water surface can be rendered later. Otherwise, a
lake surface could for example end up on a steep hillside.

We calculate terrain altitude for all corners of a
polygon. We start at the world borders with the smallest
possible elevation and recursively traverse adjacent
graph nodes from there to the map center. The elevation
of nodes adjacent to the currently processed node is
increased by a small factor € regardless if it is water or
landmass. However, if an adjacent node is landmass we
increase its elevation by an additional constant factor of
1. After traversing the graph, elevation is redistributed
and normalized. Generated terrain altitude can be seen
in Figure 9.

Redistribution

The described generation of elevation data tends to result
in high elevation in the center of a Pangaea type single
landmass or high elevation for each island center in an
archipelago type map. This goes along with steep slopes
in direction of the surrounding ocean. This method
favors islands with high mountains and steep slopes over
flat islands. To counteract this, the overall distribution



(a) Octaves: 1

(b) Octaves: 2

(c) Octaves: 3

Figure 7: Visualization of octaves in the generation of two dimensional Perlin noise. The frequency components
double with each octave. Noise generated with higher numbers of octaves contains increasingly more high frequency

components.

Figure 8: Voronoi polygons encapsulated by landmass
are marked as lakes.

of elevation can be changed, so that lower elevations are
more common than higher ones. Such a redistribution
has to preserve the elevation constraints formulated
earlier.

Lets assume a terrain with a cumulative elevation
distribution function Fy(x) = x*> as shown by the red
plot in Figure 10. This cumulative distribution function
takes an elevation value x and outputs what amount of
the terrain area has an elevation value < x. With a given
terrain, one can easily calculate how much area of the
map has an elevation < x. Assumed one would like to

Figure 9: Visualization of elevation data generated by
our algorithm. Terrain altitude is strictly monotonically
decreasing from the island center to the coast. Water,
especially lakes have a near planar elevation.

redistribute elevation to follow a cumulative distribution
function Yy (x) = 1 — (1 —x)?. Then the function can be
adapted to calculate new elevation values as shown in
Equations 3 - 5.

Yx(x) =1—(1—-x)?
= Yy(x) = 2x — &
o -2+ Yx(x)=0 (3)



Area

0.6 . / . /

04 1 4 ! 1/

0.2+/ A

0 02 04 06 _08 1
Elevation

Figure 10: Visualization of elevation redistribution. Ele-
vation data with a cumulative example distribution func-
tion eFx(x) = x” is redistributed to follow eYy(x) =
1—(1—x)2

Solving Equation 3 for x as show in Equation 4 allows to
calculate the new redistributed elevation values based on
the existing distribution Fy (x).

24 /4 —4Fx (x)

2
1 —Fx(x) “

X1p =

=1+

Since x, Fx (x) €[0,1] = /1 — Fx(x) € [0, 1]. Therefore

X1=1+\/1—Fx(x)¢[0,1] 4
A x=1-+/1—Fx(@) € [0,1] )

Thus new elevation values for a redistributed terrain can
be calculated by r(x) =1 — /1 —Fx(x). A graphical
representation of the new elevation scaling can be seen
in Figure 10.

5.4 Rivers

Generated rivers flow downhill until they reach the
ocean. The strictly monotonically decreasing elevation
constraint, described in subsection 5.3, ensures that
the calculation of the river pathway through the terrain
graph is not being complicated by local minima. Rivers
are also allowed to enter and leave lakes on their path
downhill as well as to merge with other rivers.

Our implementation chooses random polygon cor-
ners inside the landmass as source. From there we
continue to follow the edges with the steepest slope until
we reach the ocean or a maximum river length. There
is a counter for each edge, that tracks how many rivers
go through. This can be used in the rendering process,
to draw different variations of rivers depending on the
amount of water flowing through. Calculating rivers on
the nodes of the Delaunay triangulation would also be
feasible. However, since the river would pass a lot less
nodes that can bend its path this would produce irregular
rivers.

In our implementation however, we had problems
using the generated rivers in a 3D map where they are
looked upon from a close distance. Visual errors were
particularly noticeable. Rivers can follow the general
slope of the terrain, but the water has to be planar. Water
would therefore float over the terrain. And unlike in
reality where rivers bend through the terrain and have
round edges, our rivers look very angular. To generate
more realistic looking rivers that can be used in a 3D
environment where they can be observed from a close
distance, some improvements are necessary. To improve
river presentation one could fit a B-spline through all
nodes a river passes. Figure 11 shows an angular river
compared to a B-spline based river. As indicated by the
green circle in Figure 11 even using B-splines can lead
to artifacts. This is especially noticeable when using
sparsely populated graphs. There the B-spline can divert
from the polygon slope resulting in partly ascending
rivers.

Furthermore to prevent hovering rivers, riverbeds
should be carved out of the terrain mesh. The water ef-
fect can then be embedded into the riverbed.

5.5 Moisture

Moisture generation follows the idea of natural evapo-
ration of water from the ocean, lakes and rivers. This
influences the biome generation, vegetation placement
and also texture mapping. Arid areas can be rendered
with less vegetation and different ground textures as
opposed to humid regions.

Our general approach for generating moisture is as
follows:

1. Initialize every corner with a moisture of 0.

2. Corners touched by rivers emit moisture propor-
tional to the amount of water going through.

3. Lake corners emit a moisture of 1.



Figure 11: Comparison between angular edge based
rivers and B-spline based rivers. The blue edges repre-
sent the angular river model. The red dotted line repre-
sents the B-spline river model. The green circle marks
a position where the B-spline diverts from the polygon
slope indicated by the arrows.

4. Distribute moisture with a penalty of 0.9 to all adja-
cent non water corners.

5. Set moisture for all ocean and coast corners to a
constant moisture of 1.

6. Global moisture redistribution to enforce numeric
range of [0, 1].

7. Apply moisture values to the polygon centers.

Consequently, moisture generation is calculated based
on a distance metric. The moisture of a landmass corner
is calculated by my,, = mdi‘vt0.9k, where my; is the
moisture of a distant corner and & is the distance to that
corner. Where k is the amount of nodes passed when
traversing between those corners.

Ocean moisture is inserted after moisture from rivers and
lakes has been distributed. In case the ocean moisture
would be inserted together with moisture from rivers and
lakes, distribution to adjacent corners would produce a
very homogeneous moisture coverage throughout the
landmass. Especially on smaller islands, this would
lead to a uniform moisture distribution throughout the
islands.

..-‘

Figure 12: Visualization of moisture data generated by
our algorithm. Lakes emit moisture to the surrounding
terrain. Oceans do not emit moisture to terrain.

Redistribution

To work with moisture more easily we expect it to always
evenly cover a numeric range from O to 1. We redistribute
them by sorting all corners by moisture and assigning
new moisture based on the corners position in the sorted
list. Later calculations can then rely on normed moisture
values within that range.

5.6 Biomes

We implemented biome generation like the one described
in [11]. We use a modified Whittaker diagram [3] shown
in Figure 13 to determine a biome for each Voronoi poly-
gon.

Elevation and moisture are used to select biomes from
the diagram. To keep selection simple, terrain eleva-
tion is used in exchange for temperature. This approach
can be used to cover the high mountain peaks far away
from the coast in snow or tundra. For each polygon we
sample moisture and elevation at its center by taking the
average of the polygon corners elevation and moisture.
These values are used for the biome lookup. There are
a few exceptions to this procedure for oceans, lakes, ice,
beach and marsh. Polygons connected to the map bor-
ders are always assigned ocean biome. Water not con-
nected to ocean is assigned a lake biome, whereas lakes
at high elevations freeze up and get ice. Contrary lakes at
very low elevations are assigned marsh. Another special
case is the coast biome that is assigned to every polygon



0.9 Tundra

Elevation

0.8
0.7 Temperate Desert
0.6
0.5
0.4

0.3

0.2
Subtropical
Desert
0.1

0.0
00 01 02 03 04 05 06 07 08 09 1.0

Moisture

Figure 13: Whittaker diagram used for biome selection.
Parameters used to select a biome from the diagram are
moisture and terrain elevation acting as temperature.

neighboring ocean polygons. Exemplary biome assign-
ment can be seen in Figure 14 where each polygon is
pigmented with a biome from the Whittaker diagram in
Figure 13.

More realistic approaches of biome placement could in-
volve further terrain parameters to lookup biomes. A
realistic temperature metric instead a of terrain eleva-
tion, latitude and solar radiation for example. Further
improvements on moisture generation like wind, clouds
and rain can also be used to refine biomes.

5.6.1 Textures

Texture generation for the terrain surface is simple. The
final terrain texture is a linear combination of sand,
grass, dirt and rock textures. Their influence in the final
texture depends on elevation, surface normals, slopes
and moisture.

Every terrain position below water or below a constant
elevation marking the beach level is assigned a sand tex-
ture. This forms the beaches as well as the underwa-
ter grounds of lakes and oceans. The terrain above the
beaches can be made of grass, dirt and rock. The in-
fluence of grass grows linear to the amount of moisture.
The dirt texture is assigned based on elevation and mois-
ture. The influence of dirt increases linear with growing
altitude and decreases with rising moisture, respectively.
The contribution of rock texture to the final texture is de-
pendent on the terrains slope and elevation. Very high
altitudes and slopes are covered by rock to create moun-

Figure 14: Biomes are assigned to the terrain based on
elevation and moisture. Each polygon has a single biome
associated.

tain peaks and cliff like ground appearance.

5.7 Vegetation

With our implementation vegetation placement includes
not only trees and grass but also other objects like stones.

5.7.1 Plants

Plant placement is rather simplistic.
proach can be described as follows:

The general ap-

1. Choose random point on landmass.
2. Choose random plant type for the biome.
3. Based on elevation check if a plant can grow.

4. Based on surface normal check it the terrain is to
steep to grow plant.

5. Based on the previous texture mapping check if the
underlying soil is suitable to grow a plant.

Our plant placement procedure selects random points
on the landmass to place plants at. The tree type is ran-
domly selected according to the biome at that point. We
then check certain parameters of the terrain surface that
have to be fulfilled in order to grow a plant. Elevation
as well as terrain steepness and soil composition have
to be suitable for the plant. The slope check prevents
trees from growing on terrain formations like cliffs. Soil



composition is checked based on the previously done
texture mapping. Textures like rock, sand or gravel that
are related to a biome control were plants can grow.
Thereby we prevent them from growing on unsuitable
surfaces like rock or gravel.

Further improvements to generate a more natural
looking plant distribution can be made. Techniques like
[9] try to mimic their distribution with seeds. Most
plants grow from seeds that spread from other plants.
Depending on where the seeds land on the ground,
parameters like moisture and soil composition determine
if the seeds can grow. At the beginning randomly place
the initial population on fitting terrain. After some
iterations of new plant growth and the decay of old
vegetation, a realistic plant distribution can be achieved.

5.7.2 Props

In our implementation we place stones as non intractable
objects for visual enhancement. To position them we
select a certain number of random points on the terrain
that aren’t occupied by other objects and place a stone
variation. Placement probability is influenced by the
ground texture and terrain slope. Surfaces with a rock or
gravel texture are more likely to spawn stones. Larger
stones are more likely to spawn on plains whereas
smaller ones are more likely to be placed on steeper
slopes.

5.8 Objects

In our game, the player needs interactable objects like
harbors and enemy ships placed throughout the world.

5.8.1 Harbors

Harbors should be distributed along the coast of islands
for the player to interact with. Small islands should host
few or even no harbors whereas larger islands are able
to support multiple harbors. For that we calculate the
area of every island and normalize it by dividing it by the
overall landmass area. First, we check if an island is large
enough to host harbors by checking if its area is above
a threshold. If the island is large enough we calculate
how many harbors should be placed. Their quantity is
defined by multiplication of the island area with a scalar
defining how many harbors per unit of area are suitable.
To place the calculated amount of harbors first we get
a list of points forming the islands coastline. We then
iteratively select a random point from the coast and check
if it’s not too close to an existing harbor on the island.
If it’s too close, we select another random point and try
again.

10

5.8.2 Enemies

In our game the player can engage with enemy ships.
These encounters should be placed on a free spot in the
open sea, so that they don’t interfere with harbors or
other ships. To locate suitable spawn locations, we ran-
domly select points from the ocean and verify that they
are suitable spawning points. To ensure that a selected
point isn’t too close to the coast we calculate its distance
to each island. This is realized by extracting the outline
nodes of the polygon meshes forming islands and calcu-
lating distance to the selected spawn point. To prevent
a new enemy from spawning too close to existing ones,
we calculate the distance to all other spawn points and
discard it if it’s too close.

6 Results

Results of our implementation can be seen on the last
page of this paper. Examples for different generated
maps from areal perspective are shown in Figure 15.
Close-up views of the generated maps are illustrated in
Figure 16.

7 Discussion

Over the course of implementation we faced various lim-
itations and encountered the strengths of this approach.
The process is particularly versatile when it comes to
control over the generated terrain. By manipulating in-
dividual stages, a large variety of different map types
can be generated. Maps containing continents, islands
or only landmass can be created and furthermore can
be combined. For example, by exchanging the eleva-
tion model the approach can be used to generate under-
water worlds. This versatility is also noticeable when
it comes to the possible forms of visual representation
styles. Just by altering the distribution of the points used
in the generation it’s possible to enforce different visual
styles. Positioning the points on a hexagonal grid leads
to a terrain composed of hexagonal shaped cells. Placing
them in a raster, leads to a map composed out of square
cells. These different visual representations make the ap-
proach suitable for a large range of games. All data used
and produced during the generation is stored in a graph
structure. As a consequence a wide range of generation
steps is expressed by general graph traversing techniques
making them easy to alter and extend. This is especially
true for the creation of rivers.

However, depending on the intended purpose of the
generated maps there are some weaknesses. When gen-
erating extremely large maps, the approach doesn’t scale
very well. Counteracting this by generating smaller por-
tions of a large map is also difficult since the genera-



tion requires the graph structure as a whole. In our im-
plementation we therefore generated the map as a sin-
gle huge structure only slicing it into chunks for later
rendering. For larger maps we also ran into problems
with the creation and visualization of the map mesh. The
generated mesh reached an amount of vertices where it
couldn’t be rendered as a whole. If super large maps
are needed the mesh generation process has to divide
the map into several smaller sub-meshes. When using
the generated maps in situations where they are looked
at from close distances, we recommend additional im-
provements for rivers. To improve visual quality and re-
alism even further, efforts to excavate actual riverbeds
should be taken. In addition to that the course of rivers
could be smoothened by using B-Splines rather than
flowing down the angular graph edges.

As long as one is aware of these limitations the im-
plemented approach ultimately delivers a highly versatile
way of generating maps for various applications.

References

[1] Tarn Adams and Zach Adams. Dwarf Fortress.
Bay 12 Games. Aug. 8, 2006. URL: http: //
www . bayl2games . com/ dwarves/ (visited on

03/10/2017).

James Cameron. Avatar. Twentieth Century Fox.

(2]

Dec. 17, 2009. URL: http / / www
avatarmovie . com / index . html (visited on
03/10/2017).

[3] Different. Biome. Apr. 15, 2017. URL: https :
/ / en . wikipedia . org / wiki / Biome #

Classifications (visited on 04/25/2017).
(4]

Different. Diamond-square algorithm. Mar. 4,
2017. URL: https : //en . wikipedia . org/

wiki/Diamond-square_algorithm (visited on

03/10/2017).
[5] Different. Simplex Noise. Jan. 7, 2017. URL:
https : / / en . wikipedia . org / wiki /

Simplex_noise (visited on 03/10/2017).

Different. Voxel. Feb. 16, 2017. URL: https://
en . wikipedia . org/wiki/Voxel (visited on
03/10/2017).

Renee Dunlop. Avatar. Jan. 14,2010. URL: http:
/ / www . cgsociety . org / index . php /
CGSFeatures / FeaturePrintable / avatar
(visited on 03/10/2017).

Jean-David Génevaux et al. “Terrain generation
using procedural models based on hydrology”.
In: ACM Transactions on Graphics (TOG) 32.4
(2013), p. 143.

(6]

(7]

(8]

11

[9]

[10]

(11]

[12]

(13]

Brendan Lane, Przemyslaw Prusinkiewicz, et al.
“Generating spatial distributions for multilevel
models of plant communities”. In: Graphics In-
terface. Vol. 2002. Citeseer. 2002, pp. 69-87.

Sean Murray et al. NO MAN’S SKY. Hello Games.
Aug. 9,2016. URL: http://no-mans-sky.com
(visited on 03/10/2017).

Amit Patel. “Polygonal Map Generation for
Games”. In: (Sept. 4, 2010). URL: http://www—
cs-students.stanford.edu/~amitp/game-
programming / polygon - map - generation/
(visited on 03/09/2017).

Markus Persson and Jens Bergensten. Minecraft.
Microsoft Studios. May 17, 2009. URL: https:
/ / minecraft . net / en - us/ (visited on
03/10/2017).

Tamas Vicsek. Fractal Growth Phenomena. World
Scientific Pub. Co. Inc., Oct. 28, 1991. ISBN: 978-
9810206680.


http://www.bay12games.com/dwarves/
http://www.bay12games.com/dwarves/
http://www.avatarmovie.com/index.html
http://www.avatarmovie.com/index.html
https://en.wikipedia.org/wiki/Biome#Classifications
https://en.wikipedia.org/wiki/Biome#Classifications
https://en.wikipedia.org/wiki/Biome#Classifications
https://en.wikipedia.org/wiki/Diamond-square_algorithm
https://en.wikipedia.org/wiki/Diamond-square_algorithm
https://en.wikipedia.org/wiki/Simplex_noise
https://en.wikipedia.org/wiki/Simplex_noise
https://en.wikipedia.org/wiki/Voxel
https://en.wikipedia.org/wiki/Voxel
http://www.cgsociety.org/index.php/CGSFeatures/FeaturePrintable/avatar
http://www.cgsociety.org/index.php/CGSFeatures/FeaturePrintable/avatar
http://www.cgsociety.org/index.php/CGSFeatures/FeaturePrintable/avatar
http://no-mans-sky.com
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
https://minecraft.net/en-us/
https://minecraft.net/en-us/

(a) World 1 (b) World 2 (c) World 3

Figure 15: Examples of three different generated maps from aerial perspective.

(a) Island with player and harbors (b) Areal closeup view

(c) Island with a lake (d) Dry island with harbors

Figure 16: Examples of different maps from close range when flying through the maps in first person mode.

12



	Introduction
	Related Works
	Approach
	Map Representation
	Map Generation
	Landmass
	Lakes
	Elevation
	Rivers
	Moisture
	Biomes
	Textures

	Vegetation
	Plants
	Props

	Objects
	Harbors
	Enemies


	Results
	Discussion

