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Abstract
This report will give a brief review of the paper “Motion Estimation for Self-Driving
Cars With a Generalized Camera” [1]. The task of estimating the position and
orientation of a mobile system in space is a often found problem in modern machinery
that has numerous solutions. In the past odometry as it is often called, has especially
evolved with the raise of GPS and affordable small electronics like gyroscopes. Today
such technologies are not only used in the fields of robotics and aeronautics but also
for cars and even for mobile phones. In Respect of autonomous vehicles there is
the need to have additional sources of information to determine the position of a
car and enable compensation of the drawbacks of the other techniques. Therefore
I have decided to take a closer look at a visual based solution as described in [1].
Egomotion or visual odometry as it is often called, is a convenient approach based
on images made by cameras that enable the extraction of such information. Based
on knowledge of the field of stereo vision one can extract the orientation and route
a object took in space from sequential images.
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1 INTRODUCTION

1 Introduction
Today there exist plenty of techniques for estimating the motion and orientation
of mobile systems because it is a often found problem not only for cars but for all
kinds of modern machinery. In the past odometry as it is often called has especially
evolved with the raise of GPS and affordable small electronics like gyroscopes. To-
day such technologies are not only used in the fields of top line commercial robotics
and aeronautics but also for cars, mobile phones and even child toys. Visual systems
are gaining more and more relevance at that, since they proved to be a rather in-
expensive data source compared to expensive hardware like radar or lidar systems.
Nowadays cameras are already found in cars for assistance systems like parking and
digital driving monitors. But they are still less integrated for more complex tasks,
because of several problems with processing their data. Today several algorithms
still only work offline because of their high needs for processing power or specially
crafted hardware solutions. Low frame rates and complex algorithms designed to
only work with specific cameras, prevent a broad deployment. Other problems with
existing algorithms is their robustness against dynamically changing scenes or huge
occlusions.

With “Motion Estimation for Self-Driving Cars With a Generalized Camera” [1] the
task of developing a new egomotion algorithm capable of meeting real-time require-
ments for on-road cars was presented. Egomotion is a purely visual approach based
on images made by cameras that enable the extraction of an objects motion in space.
They employed the concept of an generalized-camera system to reach independence
from the camera setups construction. To reduce efforts involved in estimating a cars
motion, they described the cars motion using the Ackermann steering principle and
hence constrained it to only circular motion in a plane. They derive a two-point
minimal solution to solve for the relative motion between to camera frames. In
addition, investigations on the effects of degeneracy are provided and a solution is
developed to deal with them. They provide a real-world dataset investigation as a
proof of concept for the capabilities of the developed approach.
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2 FUNDAMENTALS

2 Fundamentals

2.1 Plücker Lines

When describing projections, a convenient way of representing directed 3D lines is
needed. As explained in [2], there are several solutions for that. A finite length
line for example could be described by specifying two endpoints of a line or if it has
infinite length, by specifying any two points on the line. Another way would be to
specify a random point on a line together with a direction vector. All this methods
would require a six element vector to describe a 3D line. The problem however
with this way of describing lines is, that there are infinite representations of a single
line. Two identical lines my be specified differently, that would make in inconvenient
to check whenever two lines are identical or what the exact distance between them is.

A better way would be to use the direction vector of the line and a vector de-
scribing the nearest point on the line from a origin. A related way is to start with
an arbitrary point on the line and take its cross product with the direction vector.
This cross product is independent of the point chosen and uniquely defines the line.
The direction unit vector v along with this cross product of a point P on the line
are known as Plücker coordinates and are denoted by a 6-vector

(v P × v)

Figure 1 illustrates a Plücker line described from a point and a direction vector.
Note that there are other variations and notations of using Plücker coordinates to
describe lines. One alternative representations for finite lines is the endpoint model
as given in [3]. In this model lines are described in a distinct way using its two
endpoints in Plücker coordinate form.

2.2 Generalized Camera Model

The concept of an generalized camera will be described here, since its understanding
is important in order to be able to follow the developed solution. Generalized camera
systems allow using multiple cameras as if they were a single imaging device, even
when they do not share a common center of projection. As stated in [4], this model
abstracts away from exactly what path light takes as it passes through the lenses
and mirrors of an arbitrary imaging system. Instead, it identifies each pixel with the
region of space that affects that sensor. One reasonable model often used for that
is cone estimation. A complete definition of this generalized model for a imaging
systems was defined in terms of ray pixels (raxels) in [5]. They described a image
taken by a generalized camera as a set of raxel measurements captured by the
system. Figure 4 illustrates a generalized camera setup on a car. The setup is made
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2 FUNDAMENTALS

Figure 1: Example of a Plücker line created from a unit direction vector v and
arbitrary point P on the line.

up out of individual cameras C1, C2, · · · , Ci at arbitrary locations on the car, where
i numerates the cameras. This cameras are describes relative to a reference frame
denoted by V . To describe this setup geometrically we need a way to represent the
cameras parameters and its effects on the images. As it is the case with the common
pinhole camera model, all cameras can be described by a set of transformations. To
describe such a transformation and hence a camera, we need two different parameter
sets. The intrinsic parameters of a camera describe the camera specific internal
configuration. Common parameters are the focal length fx, fy, the skew coefficient
γ and the cameras principal point u0, v0. In the following the intrinsic parameters
will be denoted as

Ki =

fx γ u0
0 fy v0
0 0 1


Note that non-linear intrinsic parameters like the lens-distortion are important, but
are not included in this linear model. If needed, they have to be dealt with separately.
The extrinsic camera parameters denote a coordinate system transformation from
the 3D world coordinates to the 3D camera coordinates. Therefore they describe
the translation of the camera center and its rotation in the world. In what follows
the extrinsic parameters will be denoted with the cameras rotation RCi

and its
translation tCi

using a 4× 4 matrix as followed

TCi
= [RCi

tCi
; 0 1]
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2 FUNDAMENTALS

The normalized image coordinate of a point xij for one camera is then given by
x̂ij = K−1i xij, hence reverting the effects of the internal camera parameters.
6-vector Plücker lines are used to describe a light ray that connects an image coor-
dinate xij and a 3D world point Xj. As described in subsection 2.1 a Plücker line
denoted by lij is constructed of a direction 3-vector, here denoted by uij = RCi

x̂ij
relative to the reference frame V and a point (tCi

× uij)T the line passed through.

lij =
[
uTij (tCi

× uij)T
]T

This allows description of Xj decoupled from a single center of projection.
A visual impression of the geometric construction of a camera, can be seen in Fig-
ure 2. Reformulation of the epipolar constraint for pinhole and projective cameras
as shown in [4], allows formulation of a generalized essential 6× 6 matrix EGC and
a generalized epipolar constraint shown in Equation 1.

lTij,k+1

[
E R
R 0

]
︸ ︷︷ ︸

EGC

lij,k = 0 (1)

Where lij,k and lij,k+1 are the corresponding Plücker lines from frame k and k + 1
and E is the essential matrix from the conventional epipolar constraint as described
in [6, p. 257]. Therefore E = R [t]x where t is the translation of the camera between
two frames.

Note that t is only determined up to scale when using one camera, but the metric
scale can be recovered using the generalized camera setup as described in subsec-
tion 3.4.

Figure 2: Construction of the camera system attached to a car. The camera Ci is
related to the reference frame V by its translation tCi

and its rotation RCi
.
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3 Motion Estimation

3.1 Approach

In this section a conceptual overview of the developed approach is given. Figure 3
shows the tasks involved to estimate the relative motion and orientation between
to sets of images. First a set of synchronized images is shot with a generalized
camera setup mounted on a car. Intra-camera correspondences are then computed
from the images, matching the contents of each image together as described in
subsection 3.2. Afterwards a solution for the position and yaw angle is computed
from the correspondences as particularized in subsection 3.3 and fed into a 2-Point
RANSAC algorithm. In the case the calculated yaw angle θ is found to be near zero,
because of the degeneracy described in subsection 3.4, inter-camera correspondences
are extracted between the images to compute the scale ρ using an 1-Point exhaustive
search. This data is then further refined using non-linear filtering and Kalman
filtering. Combining the calculated relative steps the full trajectory of the car can
be approximated.

3.2 Point Correspondences

The algorithm described above, distinguishes between intra-camera and inter-camera
point correspondences. Intra-camera point correspondences refer to points which are
seen by the same camera over two consecutive frames. Inter-camera point correspon-
dences on the other hand refer to frames which are seen by different cameras over
two consecutive frames. Figure 4 illustrates intra and inter-camera correspondences.

Because of the circumstance that two consecutive frames recorded by the same
camera often show the same part of a scene with just minor differences, one can
find a lot of corresponding points between the frames. With two different cameras
the amount of receivable correspondences is much lower. Therefore intra-camera
point correspondences are used for calculation and in the case of a degeneracy when
the car is moving straight, one-additional inter-camera correspondence is used to
retrieve the scale. If there should be no additional inter-camera correspondence, the
scale is propagated from the previous estimates using a Kalman filter.

Point correspondences are extracted and matched using Speeded Up Robust Fea-
tures (SURF) [7] on the GPU instead of the Scale-invariant feature transform (SIFT)
technique. Both SIFT and SURF are scale invariant feature detectors. Apparently
SIFT appears to be the more accurate feature detector, but it underlies patent-
restrictions and tends to have some drawbacks. SIFT is patented by David G. Lowe
and can’t be used for commercial products freely [8]. As reported in [9], SIFT some-
times has problems with the density and distribution of features in images. In scenes
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3 MOTION ESTIMATION

Figure 3: Overview of the developed approach for motion estimation using a gener-
alized camera on a car.

where not a lot of features can be found, like it is the case with the balustrades of
bridges or when only other cars and lamp posts can be seen, SIFT tends to deliver a
lot less features. SURF act similar, but as the name suggest it offers speed in trade-
off of precision to enable realtime calculation, as it is needed for a usable egomotion
approach. Other feasible methods to determine features are the Harris Corner De-
tection [10] or the Kanade-Lucas-Tomasi Feature Tracker (KLT) [11] which is often
found in stereo applications.

Note, if needed, using a feature detection technique to determine point correspon-
dences only allows for a sparse density point cloud reconstruction of the scene. If a
feature rich and dense reconstruction would be needed, other more computational
expensive matching techniques should be used in this step.
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3 MOTION ESTIMATION

Figure 4: Example of intra- and inter-camera point correspondences. (Source: [1])

3.3 Point Minimal Solution

To be able to meet the realtime requirement for motion estimation, the motions
freedom has to be constrained to a needed minimum. This allows for more accurate
and faster outliner removal as given in [12] and is the prime factor for speeding up
the trajectory recovery. Therefore we stick to the minimal suitable on-road model
called the Ackermann steering principle, and constrain it to two parameters, to only
allow circular motion in a plane [13]. In this model the front wheels are used for
steering as it can be seen in Figure 5. The wheels are applied with different steering
angles to allow for a smooth circular motion. For all cars following the Ackermann
steering principle, there exists a ICR (Instantaneous Center of Rotation) the car
moves around while steering. Therefore the cars motion ca be described by an angle
and the radius from the ICR. A straight motion in this model can be represented
along a circle with a infinite radius.

To determine the trajectory of a car, the relative motion between two consecutive
frames Vk and Vk+1 has to be recovered. Following the derivation for general planar
motion from for Ackermann steering in [9], the relative rotation R and the relative
translation t describe the relative circular motion in a plane. As it can be seen in
Equation 2, because of the angle ϕ = θ

2
illustrated in Figure 5, this motion is de-

pendent on two basic parameters - scale ρ and yaw angle θ. These can be calculated
using two Plücker line correspondence pairs as explained in subsubsection 3.3.2 and
subsubsection 3.3.3.
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Figure 5: Ackermann steering principle for planar and circular motion of a car.
(Source: [1])

R =

cos θ −sin θ 0
sin θ cos θ 0
0 0 1

 , t = ρ

cos ϕvsin ϕv
0

 (2)

There exist several other approaches to describe the motion a car can perform. A
less constrained motion model, allows for a wider range of possible motions the car
can perform, but increases the number of point correspondences and hence compu-
tational power needed.

3.3.1 Rewrite Generalized Epipolar Constraint

Using the standard essential matrix for pinhole cameras from [6, p. 257] and the
rotation and translation from Equation 2 the generalized essential matrix EGC can
be written as shown in Equation 3. Combining these equations, allows do derive the
epipolar constraint in terms of ρ and θ and therefore constrain the possible motion
to the Ackermann steering.
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3 MOTION ESTIMATION

EGC =

[
E R
R 0

]
=


0 0 ρ sin θ

2
cos θ −sin θ 0

0 0 −ρ cos θ
2

sin θ cos θ 0
ρ sin θ

2
ρ cos θ

2
0 0 0 1

cos θ −sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
0 0 1 0 0 0

 (3)

As the indices ij on the Plücker lines are not strictly needed for writing down the
constraint, they are dropped for readability and the Plücker line vectors are denoted
by l = [uT (tC × u)T ]T for frame k and l′ = [u′T (tC′ × u′)T ]T for frame k + 1.
Expanding the generalized epipolar constraint from Equation 1, it can be written as

a cos θ + b sin θ + cρ cos
θ

2
+ dρ

θ

2
+ e = 0 (4)

where the coefficients are

a = −uw(tCxu′y − tCyu′x)− u′w(tC′xuy − tC′yux)

+ uy(tC′wu
′
x − tCwu′x) + ux(tCwu

′
y − tC′wu

′
y)

b = ux(tC′xu
′
w − tC′wu

′
x) + uy(tC′yu

′
w − tC′wu

′
y

− ux(tCxuw − tCwux)− u′y(tCyuw − tCwuy)
c = uwu

′
y − uyu′w

d = uxu
′
w + uwu

′
x

e = uw(tC′xu
′
y − tC′yu

′
x) + u′w(tCxuy − tCyux)

(5)

The subscripts x, y and w refer to the components in the vectors. For more
detailed calculation steps, see Appendix A.

Equation 4 forms the new generalized epipolar constraint with the Ackermann steer-
ing principle due to the use of the constrained rotation and translation.
As this new equations has two unknowns, two coefficient vectors (a1, b1, c1, d1, e1)
and (a2, b2, c2, d2, e2) are needed to solve for the unknowns.
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3.3.2 Solve for scale ρ

cos θ = 1− 2sin2 θ

2
(6a)

sin θ = 2sin
θ

2
cos

θ

2
(6b)

Using the trigonomic half-angle formulas from Equation 6 and substitute α = cos θ
2

and β = sin θ
2
, the new GEC from Equation 4 can be transposed to solve for ρ as

shown in Equation 7.

ρ =
−e1 − a1(1− 2β2)− b1(2αβ)

c1α + d1β
(7a)

ρ =
−e2 − a2(1− 2β2)− b2(2αβ)

c2α + d2β
(7b)

3.3.3 Solve for yaw angle θ

Equalizing the two equations for ρ from Equation 7 to eliminate ρ, we get

(2a1β
2 − 2b1αβ − e1 − a1)(c2α + d2β)

−(2a2β2 − 2b2αβ − e2 − a2)(c1α + d1β) = 0
(8)

while the Pythagorean identity from Equation 9 has to be satisfied.

sin2 θ

2
+ cos2

θ

2
= α2 + β2 = 1 (9)

Using the Sylvester Resultant method we can now determine if the polynomials
from Equation 8 and Equation 9 have the common non constant factor α = cos θ

2
we

could eliminate to get a solvable equation in terms of β = sin θ
2
[14]. The resultant

of the two polynomials is a six degrees polynomial equation equal to the determinant
of the sylvester matrix. This equation in terms of β = sin θ

2
, can be further reduced

to a cubic polynomial by setting γ = β2 as shown in Equation 10.

Aβ6 +Bβ4 + Cβ2 +D = 0 (10a)
Aγ3 +Bγ2 + Cγ +D = 0 (10b)
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A,B,C andD are known coefficients made up of (a1, b1, c1, d1, e1) and (a2, b2, c2, d2, e2).
The full expressions can be looked up in Appendix B. As described in the paper,
there is an interesting behavior of D when using purely inter-camera correspon-
dences (tC = tC′). As it can easily be seen in Equation 5 when putting tC = tC′ , the
last to terms of the coefficient a cancel out and a = −e. Putting this new relation
in Equation 11, we see that all terms cancel out and D = 0.

D = −c22(e21 + a21)− 2c22e1a1 − c21(e22 + a22)− 2c21e2a2

+ 2c2c1(a1a2 + e1e2) + 2c2c1(e1a2 + a1e2)
(11)

Hence , Equation 10b becomes

γ(Aγ2 +Bγ + C) = 0 (12)

Using the cubic formula from Equation 13 the roots can be computed. Therefore
the solutions for γ are 0 (as it can be seen from Equation 12) and the remaining two
solutions can be computed using the cubic formula.

γ =
−B ±

√
B2 − 4AC

2A
(13)

Putting γ = β2 back in to the relation, we get up to a maximum of six real
solutions for β where two are always 0, (+0,−0). Since β = sin θ

2
, the possible

yaw angles are θ = 2arcsin(β). The trajectory now can be recovered using ρ and
θ, but should be filtered for outliners as described in subsection 3.5 to make the
results more robust. As mentioned earlier one can get many more and especially
more reliable correspondences with intra- than inter-camera correspondences. As
shown above, there is also a mathematical benefit from doing so, because it is more
efficient to compute the roots of the quadratic polynomial from Equation 12 than
from a cubic polynomial from Equation 10b.

3.4 Degenerated Case: Metric Scale Computation

Since a fully calibrated camera rig for which the cameras intrinsics and extrinsics
are known was used in the paper, the relative motion can be calculated with metric
scale. But because intra-camera correspondences are used which are captured by a
single camera, there is a degeneracy when the car is moving straight (θ = 0). This
can be observed by substituting θ = 0 into Equation 7 where the numerator cancels
out since a = −e as it is the case for intra-camera
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ρ =
−e1 − a1(1− 2β2)− b1(2αβ)

c1α + d1β

=
−e1 + e1(1− 2sin2 0)− 2b1(cos 0 sin 0)

c1cos 0 + d1sin 0

=
0

c1
= 0

As proposed in the paper, one can still assign unit scale ρ = 1 for the solution
of θ = 0, because an unit scale still fulfills the Sampson error computation [15].

The scale can always be uniquely determined from the GEC when there is at least
one inter-camera point correspondence. In this case one has tC 6= tC′ and a 6= −e
for the straight case θ = 0, which shows when put into Equation 7

ρ =
−e1 − a1(1− 2β2)− b1(2αβ)

c1α + d1β

=
−e1 − a1(1− 2sin2 0)− 2b1(cos 0 sin 0)

c1cos 0 + d1sin 0

=
−e1 − a1

c1

that the scale can be recovered. Therefore one additional inter-camera correspon-
dence can be used when θ = 0, ρ = 1 turns out to be the solution with the high-
est inliners for the general intra-camera case after outliner removal, described in
subsection 3.5. In practice, this can be done effectively by searching through all
inter-camera point correspondences for inliners and then using them to calculate ρ.

3.5 Robust Estimation

As conducted in the paper the 2-point algorithm for estimating the scale and the
yaw angle is made robust by implementing it within Random Sample Consensus
(RANSAC) [12], to effectively reject outliners. RANSAC is used for interpreting
and smoothing data that contains a significant percentage of gross errors. Fitting
of models in the presence of many data outliners is ideally suited for applications in
automated image analysis where interpretation is based on data provided by error-
prone inputs like feature detectors. Classical techniques for parameter estimation,
such as least squares, optimize the fit of a model to all of the presented data. They
have no internal mechanisms for detecting and rejecting gross errors like RANSAC
does [12].

13
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Since the correspondences are not ideal, there are observation errors that have
to be dealt with. Every line-correspondence l, l′ that includes a observation error,
breaks the epipolar constraint from Equation 1. Only a sub-pixel perfect corre-
spondence could satisfy the constraint. The distance between the observed corre-
spondence and the perfect one is called the reprojection error. The Sampson error
is the approximated reprojection error with a linear approximation of the epipolar
constraint. [15]

The Sampson error is used for evaluation of a fit using intra-camera correspondences
in the RANSAC model. For a computational less expensive evaluation the normal
essential matrix instead of the generalized one suits, because only intra-camera cor-
respondences are used and it has to fulfill the constraint from Equation 14 where
x̂′ and x̂ are normalized corresponding image coordinates. The essential matrix is
used to describe a relation between normalized image coordinates of two calibrated
cameras and therefore their relative position and orientation.

x̂′TEx̂ = 0 (14)

The Sampson error is checked for each point correspondence within the individual
cameras. The essential matrix (Equation 15) of each individual camera, can be
computed from the relative motion R and t as introduced in Equation 2

E = R[t]x (15)

where [t]x is the matrix representation of the cross product with t.

3.6 Refinement

In the paper two refinement techniques are utilized to enhance the results. I will
only give a brief overview and will not go into detail since this step is not crucial for
the general mechanics of the described approach and also would require a 3D point
reconstruction of the scene to work. First non-linear refinement is used on all inliners,
that are found using RANSAC. The cost function calculates the squared sum of
deviations from a image point to a 3D world point, projected on to the image plane.
The second enhancement step further improves the results with Kalman filtering.
Therefore two independent 1D Kalman filters with constant velocity prior are used
to smooth out noisy estimates for the yaw angle θ and the scale ρ. If at some time
no point-correspondences can be found, the previous estimates of the last frame are
propagated through the filters. In their real-world proof of concept implementation,
they also used bundle adjustment and loop close techniques to improve the result.
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4 Results
To evaluate the developed algorithm, a proof of concept data set was collected by
using four fish-eye cameras that where already build in, to a commercially available
car. Figure 6 shows the camera images used to collect the dataset. The cameras
extrinsics were provided by the cars manufacturer and the cameras intrinsics were
derived through calibration. To collect the dataset, they drove a 600m closed loop
around a planar parking lot. During the drive, they captured a total of 4 × 2500
images and fed it into their algorithm. Besides that they collected GPS corrected
inertial navigation system (GPS/INS) readings of the trajectory as ground truth
data. The SURF feature extraction is done on the raw fish-eye images delivered by
the cameras. For the non-linear refinement stage these images are undistorted using
a fish-eye camera model in order to be able to do a efficient 3D triangulation needed
for this stage.

Figure 6: Images from the 4 cameras with fish-eye lens on the car used for testing.
(a) Front, (b) Rear, (c) Left, (d) Right. (Source: [1])

15
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Figure 8 shows the plots of all 2499 relative motions based on the first image
as the reference frame. In Figure 8a, raw scale values recovered by the algorithm
are compared to the ground truth and the filtered results. As it can be seen the
scale estimations seem to be somewhat noisy, but show only a standard deviation of
around 0.125m from GPS/INS. According to the authors the degenerated case when
the car moves straight and one additional inter-camera correspondence is needed,
was used 79.9% of the time. Figure 8b illustrates the recovered yaw angle of the
car. As it can be seen, even without filtering the recovered angle is very close to the
ground truth and shows no noticable drift. The fully recovered trajectory of the car
can be seen in Figure 7.

Figure 7: Top view of the recovered trajectory with enhancements compared to the
GPS/INS ground truth. (Source: [1])
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4 RESULTS

(a)

(b)

Figure 8: Scales ρ (a) and yaw angles θ (b) between all consecutive frames from the
motion estimation algorithm compared to GPS/INS ground truth. (Source: [1])
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5 Conclusions
The authors presented a new visual egomotion algorithm with metric scale for on-
road vehicles. For their formulated model, they derived a analytical two point
minimal solution for planar and circular motion. They identified a degeneracy in
the model and supplied a suitable way to eliminate the degeneracy. With this they
are able to calculate the relative translation and rotation of a moving vehicle based
on camera images and hence recover its full trajectory. To demonstrate and evaluate
their investigations, they created a proof of concept implementation and tested its
practicality and robustness against degeneracy on real world data. Therefore they
used a original sized car equipped with four cameras and collected real world data
on a planar parking lot, driving in a closed loop.
Analyzing the collected data, they compared the computed raw data against dif-
ferent filters that smoothed the data and removed noise. The collected dataset
contains 4× 2500 images taken while driving a 600m long loop. At first this seems
to be a fairly small dataset, but further investigations shows, that this size is com-
parable to the size used by other researchers. They compared the collected raw
results against the filtered data and collected ground truth data using GPS. For the
computed scales, they stated the standard deviation from ground truth and even
analyzed how often inter-camera correspondences where used to compensate for the
degeneracy.

According to the authors the intended real time requirements are met, because
of their implementation being able of handling 6 frames per second. Besides that
they are convinced, that the assumptions on vehicle motion made, hold for real
world data. As shown by their real-world dataset the developed approach is able to
recover the scale and the yaw angle successfully. Although recovery of the scale is
somewhat noisy, the yaw angle can be calculated with high precision and no recog-
nizable drift.
In my opinion, the real time capability with only 6 frames per second is just enough
to deliver usable results, since it only allows for a rather rough resolution. A car
driving around 60 kilometers per hour for example, would move around 2.8 meters
between each frame. Besides that, a normal car does not really obey only planar
circular motion. Still I think the developed approach was successful as they proved,
that they can reduce the complexity. Their approach can be used in applications
where planar motion is given and the results can be refined with additional sensor
data to compute the scale. Because in their real-world test they had to use additional
inter-camera correspondences around 80% of the time. With this they developed a
base for further improvements and additional research. In the future investigations
on how non-static scenes could affect the results should be done and larger datasets
should be collected to establish a well-founded evaluation on the produced results.
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6 RELATED WORK

6 Related Work
The authors gathered research done on different fields of egomotion and combined
them to form a new and more advanced method. Pless [4] established the idea of
using generalized camera systems where only one epipolar constraint for the whole
system is used to describe relative motion, instead of one per camera pair. Pless
derived the generalized essential matrix and introduced a algorithm for solving it.
Later Li et al. [16] did work on enhancing the algorithm for solving for the gen-
eralized essential matrix and identified degeneracy when using intra-camera corre-
spondences. Scaramuzza et al. [9] done research on using the Ackermann steering
principle, to reduce the needed effort for solving for the generalized essential matrix
to a 2-point algorithm. Since he was using omni-directional cameras he developed
an extra approach to receive metric scale from it.

In [1] the authors combined this research to a new algorithm. Through combi-
nation of the generalized camera systems, the knowledge of degeneracy when using
intra-camera and previous work on constraining motion using the Ackerann steering
principle, they were able to derive a new solution. As Clipp et al. [17] has done it in
the past, they used another camera to compensate for the degeneracy and retrieve
scale. They were the first to show a 2-point algorithm for a generalized camera
system which comes close to real time and they where the first demonstrating its
functionality on real-world data.
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A (4)→ (5)

A (4)→ (5)

The first big step from equation (4) → (5) in the paper, is to establish the coeffi-
cients obtained from a Plücker line correspondence. For reasons of clarity if will not
present all the conducted sub-steps in the mathematical calculation. Lets denote
a corresponding Plücker line pair l = [uT (tC × u)T ]T , l′ = [u′T (tC′ × u′)T ]T as
followed.

u′x
u′y
u′w

tC′yu
′
w − tC′wu

′
y

tC′wu
′
x − tC′xu

′
w

tC′xu
′
y − tC′yu

′
x

 = l′


ux
uy
uw

tCyuw − tCwuy
tCwux − tCxuw
tCxuy − tCyux

 = l

Next we fully expand the generalized epiporal constraint from left to right.

l′TEGC l = 0

l′T


0 0 ρ sin θ

2
cos θ −sin θ 0

0 0 −ρ cos θ
2

sin θ cos θ 0
ρ sin θ

2
ρ cos θ

2
0 0 0 1

cos θ −sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
0 0 1 0 0 0

 l = 0


u′w ρ sin

θ
2
+ (tC′yu

′
w − tC′wu

′
y)cos θ + (tC′wu

′
x − tC′xu

′
w)sin θ,

u′w ρ cos
θ
2
+ (tC′wu

′
x − tC′xu

′
w)cos θ − (tC′yu

′
w − tC′wu

′
y)sin θ,

u′x ρ sin
θ
2
− u′y ρ cos θ

2
+ (tC′xu

′
y − tC′yu

′
x),

u′xcos θ + u′ysin θ,
u′ycos θ − u′xsinθ,

u′w




ux
uy
uw

tCyuw − tCwuy
tCwux − tCxuw
tCxuy − tCyux

 = 0

23



A (4)→ (5)

uxu
′
w ρ sin

θ
2
+ ux(tC′yu

′
w − tC′wu

′
y)cos θ + ux(tC′wu

′
x − tC′xu

′
w)sin θ

+ uyu
′
w ρ cos

θ
2
+ uy(tC′wu

′
x − tC′xu

′
w)cos θ − uy(tC′yu

′
w − tC′wu

′
y)sin θ

+ uwu
′
x ρ sin

θ
2
− uwu′y ρ cos θ

2
+ uw(tC′xu

′
y − tC′yu

′
x)

+ (tCyuw − tCwuy)u′xcos θ + (tCyuw − tCwuy)u′ysin θ
+ (tCwux − tCxuw)u′ycos θ − (tCwux − tCxuw)u′xsin θ
+ (tCxuy − tCyux)u′w = 0
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A (4)→ (5)

After that I rearrange the terms of the sum to match equation 5 of the paper in
order to read out the coefficients of the Plücker line correspondences.

[
ux(tC′yu

′
w − tC′wu

′
y) + uy(tC′wu

′
x − tC′xu

′
w)

+(tCyuw − tCwuy)u′x + (tCwux − tCxuw)u′y

]
︸ ︷︷ ︸

a

cos θ

+

[
ux(tC′wu

′
x − tC′xu

′
w)− uy(tC′yu

′
w − tC′wu

′
y)

+(tCyuw − tCwuy)u′y − u′x(tCwux − tCxuw)

]
︸ ︷︷ ︸

b

sin θ

+
[
uyu

′
w − uwu′y

]︸ ︷︷ ︸
c

ρ cos θ
2

+
[
uxu

′
w + uwu

′
x

]︸ ︷︷ ︸
d

ρ sin θ
2

+ uw(tC′xu
′
y − tC′yu

′
x) + u′w(tCxuy − tCyux)︸ ︷︷ ︸

e

= 0

Since the coefficients are differing from the paper we have to rearrange the equation
step by step to get to the equation given in the paper. For that I will expand every
coefficient (a, b, c, d, e) and reorganize its terms to isolate the wanted representa-
tion. [

uy(tC′wu
′
x − tCwu′x) + ux(tCwu

′
y − tC′wu

′
y)

−uw(tCxu′y − tCyu′x)− u′w(tC′xuy − tCyux)

]
︸ ︷︷ ︸

a

cos θ

+

[
ux(tC′xu

′
w − tC′wu

′
x)− uy(tC′yu

′
w − tC′wu

′
y)

−ux(tCxuw − tCwux)− u′y(tCyuw − tCwuy)

]
︸ ︷︷ ︸

b

sin θ

+
[
uwu

′
y − uyu′w

]︸ ︷︷ ︸
c

ρ cos θ
2

+
[
uxu

′
w + uwu

′
x

]︸ ︷︷ ︸
d

ρ sin θ
2

+ uw(tC′xu
′
y − tC′yu

′
x) + u′w(tCxuy − tCyux)︸ ︷︷ ︸

e

= 0
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B (8, 9)→ (10)

B (8, 9)→ (10)

Once we obtained the coefficients listed in the paper, the next big step from equa-
tion (8, 9) → (10) in the paper, is to obtain the coefficients A, B, C, D using
the Sylvester Resultant method. For reasons of clearity if will not present all the
conducted sub-steps in the mathematical calculation. The resultant of the two poly-
nomials from (8, 9) is a six degrees polynomial equation equal to the determinant of
the sylvester matrix. To calculate the Sylvester Resultant, we just have to establish
the sylvester matrix and calculate its determinant.
(2 a1 d22 b1 c2 + 2 c1 b2 + 2 d1 a2) β

3 + (d1 e2 + (e1 + a1)
d2 + 2 b1 c22 c1 b2d1 a2 β (2 b1 d2 + 2 a1 c2 + 2 d1 b22 c1 a2) β

4 + (c1 e2 + 2 b1 d2 + (e13 a1) c22 d1 b2 + 3 c1 a2) β
2c1 e2 + (e1 + a1) c2c1 a2

(2 b1 d22 a1 c22 d1 b2 + 2 c1 a2) β
2c1 e2 + (e1 + a1) c2c1 a2 (2 a1 d22 b1 c2 + 2 c1 b2 + 2 d1 a2) β

3 + (d1 e2 + (e1 + a1) d2 + 2 b1 c22 c1 b2d1 a2) β



Calculating the determinant of the matrix leaves us with equation (10a) of the paper

Aβ6 +Bβ4 + Cβ2 +D = 0

where its coefficients A, B, C, D are

A =
(
4b21 + 4a21

)
d22 + ((8 b1 d18 a1 c1) b2 + (8 b1 c18 a1 d1) a2) d2

+
(
4 b21 + 4 a21

)
c22 + ((8 a1 d18 b1 c1) b2 + (8 b1 d18 a1 c1) a2) c2

+
(
4 d21 + 4 c21

)
b22 +

(
4 d21 + 4 c21

)
a22

B =
(
(4 a1 d14 b1 c1) d2 + (4 b1 d1 + 4 a1 c1) c2 +

(
4 d214 c

2
1

)
a2
)
e2

+
(
4 a1 e14 b

2
14 a

2
1

)
d22 + ((4 c1 e1 + 8 b1 d1 + 12 a1 c1) b2 + (4 d1 e1 + 8 a1 d112 b1 c1) a2) d2

+
(
4 a1 e18 b

2
18 a

2
1

)
c22 + ((4 d1 e112 a1 d1 + 16 b1 c1) b2 + (4 c1 e1 + 12 b1 d1 + 16 a1 c1) a2) c2

+
(
4 d218 c

2
1

)
b22 +

(
4 d218 c

2
1

)
a22

C =
(
d21 + c21

)
e22 +

(
(2 d1 e12 a1 d1 + 4 b1 c1) d2 + (2 c1 e14 b1 d16 a1 c1) c2 +

(
2 d21 + 6 c21

)
a2
)
e2

+
(
e21 + 2 a1 e1 + a21

)
d22 + ((4 c1 e14 a1 c1) b2 + (2 d1 e12 a1 d1 + 4 b1 c1) a2) d2

+
(
e21 + 6 a1 e1 + 4 b21 + 5 a21

)
c22 + ((4 d1 e1 + 4 a1 d18 b1 c1) b2 + (6 c1 e14 b1 d110 a1 c1) a2) c2

+ 4 c21 b
2
2 +

(
d21 + 5 c21

)
a22

D = c21 e
2
2 +

(
(2 c1 e1 + 2 a1 c1) c22 c

2
1 a2
)
e2

+
(
e212 a1 e1a

2
1

)
c22 + (2 c1 e1 + 2 a1 c1) a2 c2c

2
1 a

2
2

Since D does not look like equation (11) of the paper, we once again have to expand
and rearange it.

D = c21 e
2
2 +

(
(2 c1 e1 + 2 a1 c1) c22 c

2
1 a2
)
e2

+
(
e212 a1 e1a

2
1

)
c22 + (2 c1 e1 + 2 a1 c1) a2 c2c

2
1 a

2
2

= −c22(e21 + a21)− 2c22e1a1 − c21(e22 + a22)− 2c21e2a2

+2c2c1(a1a2 + e1e2) + 2c2c1(e1a2 + a1e2)
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